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On the Spectrum of the Heisenberg Hamiltonian 
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The quantum, antiferromagnetic, spin-l/2 Heisenberg Hamiltonian on the 
d-dimensional cubic lattice 7/a is considered for any dimension d. First the 
anisotropic case is considered for small transversal coupling and a convergent 
expansion is given for a family of eigenprojections which is complete in all finite- 
volume truncations. Then the general case is considered, for which an upper 
bound to the ground-state energy is given which is optimal for strong enough 
anisotropy. This bound is expressed through a functional involving the statisti- 
cal expectation value at finite temperature of a certain correlation function of an 
Ising model defined on the lattice 77 ~ itself. 

KEY W O R D S :  Antiferromagnetic Heisenberg model; perturbation theory; 
Monte Carlo method. 

There are two reasons why I became interested in the spin-�89 anti- 
ferromagnetic,  quan tum Heisenberg model  in many  dimensions and at zero 
temperature.  First, this model  describes a large class of antiferromagnetic 
insulators and it is at tracting much interest because its unders tanding is of 
basic impor tance  for the construct ion of  a theory of high-temperature 
superconductivity.  Second, this is one of the simplest nontrivial quan tum 
m a n y - b o d y  problems for which no exact solution is available. In  this note 
I analyze this model  perturbatively, starting from the Ising limit and 
treating the transversal coupling as the perturbation.  The literature on this 
sort of per turbat ion  theory is given in ref. 1. F r o m  the mathematical  point  
of view, the problem of controll ing the convergence of such expansions 
shows difficulties of a type scarcely considered so far. In fact, a straight- 
forward application of Rayle igh-Schr6dinger  expansions is bound  to fail 
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because, as often happens in many-body problems, the perturbation is not 
relatively bounded with respect to the main part, i.e., the Ising Hamiltonian. 
To overcome this obstruction, I follow ref. 2 and make use of a dressing 
transformation which permits one at once to write a directly controllable 
expansion for the ground state, to define quasiparticles as local perturba- 
tions of the ground state, and to study their interactions. As in ref. 1, I end 
up with cluster expansions for all local observables. However, I do not use 
Matsubara-Feynman, but a new diagrammatic technique which has the 
property of yielding controllable expansions. Since the present series for 
any local observable are the same as those obtained with the methods of 
ref. 1, this provides an indirect proof of the convergence of their methods. 
Finally, I prove a formula which can be used to set up a variational 
Monte Carlo method to estimate the ground-state energy of the isotropic 
Heisenberg model in all dimensions. Such an estimate is actually an upper 
bound which is saturated for strong enough anisotropy. These numerical 
applications are discussed in ref. 5. 

1. I N T R O D U C T I O N  A N D  RESULTS 

Let us consider the following family of Heisenberg Hamiltonians 

H~= ~ (1 _(3)~o)~ ~1~ ( 1 ) + ~  ~y ) (1.1) . + O x  ~,y j + A ( ~ x  ay  (2) (2) 
<xy) 

Here ~(1), ~(2) and ~(3) are the Pauli matrices, 2 is a parameter, and A is 
a torus obtained by gluing the opposite faces of a cube in Z d. The Hilbert 
space is ~ =  @i~A C2. We are interested in the properties of (1.1) in the 
infinite-volume limit A T Zd. 

To state the first result, let us introduce the function ad(2), analytic for 
2 small, which is implicitly defined by the following equation: 

1 
ad()o) - [d(l + 2)exp(4aa(2))+ ( 1 - d ) 2 - d ]  (1.2) 

1 + 4 d  

We have aa(O)= 0. Let Pa be the radius of analyticity around )v= 0 of 
aa(2). Moreover, let {E,},=o,1 .... denote the set of those integers which 
form the spectrum of the Ising Hamiltonian H0 and let Pn be the spectral 
projection on the nth eigenspace. In Sections 2 and 3 I prove the following 
theorem. 

Theorem 1. (i) For all n t> 0, all 12f small enough, and all cubes A 
large enough, there exist eigenprojections Pn for the operator H 2 which 
depend analytically on n but not on A, and are such that Pno = P. .  For 
n =-0, Po has a two-dimensional range and its radius of analyticity is not 
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smaller than that of ad(2), i.e., Pd" For n >/1, the radius of analyticity of P .  
is not smaller than 

[ 4e2kd(E~ + 2) + ekd] - 1 (1.3) 

where kd is the smallest constant such that ~ . ~ , .  ad[21"~< (kd [)~1)" for all 
a d  ~ c~ d n m>~0, where ( ) = ~ . = 1  a .2  . 

(ii) For 121 small enough, the two eigenvalues E~  and E~'~ of H~ 
restricted to Po;Yg are separated by a finite gap uniform in A as A T Z d, 
from the rest of the spectrum of H;. Moreover, we have 

IE6~ -E~. I  = O(IAI (Ca2) IAI/2) 

as A T 72d, where ca is a constant. 

The two eigenstates of lowest energy, i.e., those which span the 
subspace Po~)ff, have the form 

exp ( - ~  J r ( 2 ) % ) [ I N ) + I N ' ) ]  (1.4) 

Here the sum runs over all finite subsets ~ of A; the J~(A) are analytic func- 
tions of 2; IN) and IN')  are the two N6el states; and z~ is the operator 

re : 1-I vx (1 .5 )  
xET 

where Zx is the operator which flips the spin on the site x, 

,fl1" > ~ I~> 
~ x  : 0-(1):  

~1+)--, IT) 

Since the energy difference among the two states (1.4) vanishes in the 
infinite-volume limit, it is natural to try a wave function of the form 

IJ)=exp ( ~  ~ J ~ )  l N) (1.6) 

as a variational ansatz to bound from above the ground-state energy. 
Thanks to Theorem 1, in the infinite-volume limit and for strong enough 
anisotropy, this bound is optimal. The problem of evaluating the expecta- 
tion value of the energy for states of the form (1.6) can easily be handled 
with a Monte Carlo procedure once one knows the identity reported 
below. 
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T h e o r e m  2. For all 2, we have 

( J l J )  -1 (JI H;. l J )  = [Tr(e "0]- -1Tr(P(J ,  2 ) e - ' )  

where Hs is the following Ising Hamiltonian: 

(1.7) 

with a~=  a(x3)= (o 1 o )  and 

P(J, 2)= ~ tl+(2Crxoay o-1) 
( x o Y o )  t 

=EJ . I] (1.8) 
7 x~7  

v ~  <x0y0> x ~  

(1.9) 

Here (XoYo) is any bond of Z d and the notation 7 ~ (XoYo) means that 
the set 7 touches but does not contain the bond (XoYo). 

This result is proven in Section 4, while the discussion of its numerical 
applications is given in another paper. (5) 

I conclude this section with a few words about the strategy of the 
proof of Theorem 1. To fix the notation, I anticipate that I found it 
convenient to rewrite the Hamiltonian (1.1) as follows: 

H,t= ~ (ax~ry+ 1) + 2ZxZy(1 -- ax~ry ) (1.10) 
( x y )  = A 

where ~ = a(3)= (1 o )  and z was defined in (1.6). I shall also introduce the 
operators S=Z<xy> (~rxCry+ 1) and g=~(xy ) ZxZy(1- O'xO'y ) SO that 

H~=S+ 2K (1.11) 

The main difficulty of this problem of perturbation theory is that the 
perturbation 2K is not relatively bounded with respect to S in the infinite- 
volume limit, so that Rayleigh-Schr6dinger expansions cannot be applied 
directly. To get rid of this problem I follow ref. 2 and make a dressing 
transformation defined by a self-adjoint operator R(2) analytic for 121 
small, such that 

e-R(a)(S + 2K)eR(;) = S + V(2) + Eo()0 + F(2)(IN> (N'[ + IN')  (N[) 

(1.12) 

Here Eo(2) and F(2) are analytic functions with F(2)=  O(IAI Icd2i lal/2 as 
A T Zd, for some constant Ca. Here V(2) is an operator which annihilates 
the N6el states. The existence of R(2) proves that the subspace eR(a)Po..Cf 
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is invariant under H~. Hence P0;. exists, is analytic, and is the orthogonal 
projection onto eRr Moreover, in Section 3 I shall verify that with 
the present choice of R(2), V(2) turns out to be relatively bounded with 
respect to S. Hence, after a dressing transformation and the subtraction of 
the infinite constant Eo(2) from (1.2), one is in a situation in which 
Rayleigh-Schr6dinger expansions can be used to represent the other eigen- 
projections. This permits us to conclude the proof of Theorem 1. 

2. T H E  D R E S S I N G  T R A N S F O R M A T I O N  

In this section I prove that, for every cube A, there are an operator 
R(2) and functions E0(2 ) and F(2) analytic in a disc around )~ = 0 of size 
independent of A such that F(2)=  O(IAI [ca21 tAi/2) for some constant Cd as 
the cubes A tend to 7/a, and we have 

e-n('~)H;en(;) IN) = Eo((2)IN) + F(2) IN ' )  (2.1) 

The operators solving the conjugacy problem (2.1) are not uniquely 
determined by this property. One way to take advantage of the freedom left 
is to look for a solution of the form R(2) = Z n ~  2"R~, where 

Rn = Z  r.~ [ I  ~ (2.2) 
7 x ~ 7  

Note that with this choice of R(2), if (2.1) is satisfied, then also the 
equation obtained by interchanging IN) and IN')  holds, so that we find 
(1.12). The rnr in (2.2) are constants determined by the following recursive 
relations, which are derived from (2.1): 

IS, R.] IN) = SR~ IN) 

1 
2 

il<~ "'" ~ i m  (i)! 
# i > ~ 2 , [ i l = n  

- -  E ' ' "  I S ,  R i l l , . . .  , R i m  ] I N )  

1 
-- ~ ( j ) !  

�9 .. ~ �9 Jl ~ ~ Jm 
IJl = n  1 

- -  [ -  I-K, Rj,] ..... Rim]IN) 

+ Eo. IN) +FnIN')  (2.3) 

where Eon and Fn are the nth coefficients of the power series expansions for 
Eo(2 ) and F(2), respectively. The operators S and K have been defined in 
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Section 1 and I use the following notations 
i = (i 1,..., im) of positive integers: 

For  n = 1, we have 

for the multi-indices 

1 
R I = -  ~ 4d-2zxZY (2.6) 

( x y )  

i.e., the constants rlr are nonzero only if y is a bond and in this case they 
are equal to - 1 / ( 4 d -  2). 

For  n > 1, we have 

[ " "  [~7xoaYo,  R i l l " "  R i m ]  

= ( -2 )m E "'" E rit~, . . .r,~,zr, ...z~maxoay o (2.7) 

Let Fix-~im be the coefficient of the operator zA ffxofyo in (2.7). Note that this 
coefficient vanishes if Iil < �89 

Let us introduce the notation ~(7) for the constant for which 

S% IN) = e(7)r~ IN) (2.8) 

~(7) is the number of frustrated bonds of the configuration z~ IN). But e(7) 
also has another interpretation. Observe that the constants rmr are 
invariant under translations or rotations by an angle �88 of the set 7. Hence, 
the functions r, .  and e(.) can be projected on the quotient set c# between 
the set of all nonvoid subsets 7 of A different by A, modulo the group 
generated by these symmetry operations. For each bond (XoYo) and class 
~7 ~ ~g, we have 

# { 7 ~ s . t .  (XoYo) ~ 7} = 2~(7) =2~(~) (2.9) 

One can thus estimate as follows the norm of the operator (2.7) applied to 
IN) minus the component along IN ' ) :  

II [- - [axoayo, Ri,]" "'Rim] IN) - r ; ,  ,~IN')II 

YI " " "Tm 

" * - . r* (2.10) = 4 ri l  " tm 

= H E# {ij--n}]! (2.4) 

Iil = il + --- + im (2.5) 
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where 
r * =  ~ Iri~lg(5) (2.11) 

5ecg 

Hence, the norm of the first two terms on the right-hand side of (2.3) 
is bounded from above by 

diAl  f ( r l  ..... r , _  ~) (2.12) 

where d i A l  is the number of bonds and 

4 m 4 m 

f ( r l , . . . , r , _ l )  = - ~. (i)! r * . . . r ~  + ~ r * . . . r *  (2.13) 
,,<_...<.,~ j ,<.. . .<_j~ (J ) !  '~ 

# i ~ 2 ,  Ii] = n  IA = n - -  1 

On the other hand, thanks to (2.8), the norm of the left-hand side of 
(2.3) is equal to 

Ir,rl e(7)> IAI ~ Ir~lzU) = lA i r*  (2.14) 
y ~7 

In fact, I AI gives a lower bound to the number of elements in a class of cg. 
Taking together (2.13) and (2.14), we find 

r* <<. d f ( r l  ,..., r , _  1) (2.15) 

a be the sequence defined by the following recursive relations: Let an 

am a = r* = 1 (2.16) 
d _  df (a~ ..... a a a n -  , -1 )  for n~>2 

d>_ , for all n~> 1. Thus, R()L) is analytic in a disc around the We have a n > .  r n 

zero whose radius is not smaller than the radius of convergence of the 
series 

aU(2)= ~ a~2" (2.17) 
n = l  

The function aa(2) satisfies formally the following equation: 

ad(2) = d(1 + 2)e 4a~(a) + (1 - d) 2 - d -  4daU()~) (2.18) 

In fact, the right-hand side can be expanded as follows: 

i4 i4- 2 + d [aa(2)]" + d2 ~.v lad(2)]" 
n = 2  F/! n = l  

, a a 
= 2 + d  2 f ( a ~  ..... a~_~ ) (2.19) 

n = 2  

822/55/1-2-20 
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ad(,~) exists and it is analytic around 2 = 0 if and only if Eq. (2.18) admits 
such a solution. But this is a consequence of the implicit function theorem. 

As a consequence of the estimates above, we also find the following 
bound: 

IF(2)]~< ~ d ] A ] f ( r  I ..... r ,  1)2" 
n = [A[/2 

~< [A[ '~, a~a2 " = O[]AI (Cd,~) IAI/2] 
n = I a l / 2  

as A T z/d, where Ca is a constant. 

3. THE EXCITED STATES 

In this section I study the operator V(2) such that 

e - R ( ~ ) ( S + A K ) e R < X ) = E o ( 2 ) + S +  V ( 2 ) + F ( 2 ) [ I N >  <N'I + IN'> (NI l  (3.1) 

and prove that it is relatively bounded with respect to S (see Kato <4) for 
the definition of relative boundedness). The relative bound is not larger 
than 2 0 a d ( ~ ) ,  where ad(,~) is the function defined in (1.2). In particular, this 
bound is uniform in A as A T zd and it permits the control of the Rayleigh- 
Schr6dinger expansion for the eigenprojection Pn~ for any n, in the infinite- 
volume limit. 

For the operator V(2) we have 

<~oyo> , ,=~ ~,_<....<,m (i)! 
Iil  = n  

X ~ r i l T t  �9 . . r i m Y m ' ~ y t  �9 �9 �9 ~ y r n t T x o ~ Y O  

~'l ~ (xoyo) 

~,. ~ <xoyo5 

-- 2 (--2)m 2 
j,.<....<j~ (i)! ~<~oyo> 

l J l  = n - 1 - - .  

~m ~ <xoYo> 

71 
r i t y  I �9 . . r i m  yrn  "C 71 " . . ~ Tm ~ XO T YO ff XO ff YO I ~ 

(3.2) 

The relative form boundedness of V(2) with respect to S is established by 
the following lemma. 

I . e mma  3.1. The following bound holds for the operator norm of 
~'(;~) = S -  1/2 V(2) S -  1/2 

1[S-1/2V(,~)S-1/2111 ~ 2e:kal2[  (3.3) 
1 - ekal2] 
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where k d is the largest constant such that ~n~=maalj,["~(kd]Z[) m for all 
m>O. 

Proof. We have 

/IS '/2v(~)S "21I, 

~<sup 11S-1/2 V( 2 ) S -  ~/217 >11~ 
Y 

=sup ~, L Y', e(7) me(7') 1/zl<7'l Qxy()~) [7 >[ 
Y <xy)c~ 7 n = l  y':d('l,T')=n 

where 

(3.4) 

Qzy(2)= L .~mQx, y;m 
m = l  

= e  R ( X ) H x y e R ( 2 )  1 - - ~ ( 3 ) ~ ( 3 )  E o ( • )  
- -  u x t) y 2d[A[ (3.5) 

and 

Hxy = 1 + r (3 )~(3)  -{- ( i ) ~ ( 1 ) .  ~ ( 2 ) ~ { 2 ) ~  -x ~y 2(o:, ~,y Tux ,,y ) (3.6) 

The distance d(7,7') between two excitations 7 and Y' is defined as 
the minimal length of a connected graph whose endpoints are Y AT'= 
(7 u 7')\(7 c~ 7'). We have 

(3.4)=sup ~ ~ ~ ~. l)d ~ 
? < x y > c ~  7 n = l  7':d(y,~')=n m = n  

x~(7) '/=~(7')-'/z1<7'[ Q.,y;m 17>1 (3.7) 

From the first part of the proof, we see that H Qxy;m[[l~2adm. Hence we 
have 

F  (7)7 'j' (3.4)~<sup 2(kal21)" sup 
o = ,  ~ ' : ~ ( ~ , ~ ' )  = .  L~(7')J 

.<2 l "2 
.=~ ~, Lmax(1, ,~(7)-n)J 

<~2 ~ (kd[2[")e'+"= 2eZku[2l QED 
. = I  l--kde[2] 

We can now complete the proof of Theorem 1. 

(3.8) 
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(i) 
integral: 

The projection Pn~ for n > 0 is given by the following contour 

p,~ = ff~ d~ 1 
" 2-~i  ~ - -  S z  - V ( 2 )  

where cg, is a circle of radius �89 in the complex plane with origin in E,,. 
Remark that I AI is assumed to be so large that the distance between two 
eigenvalues of S~ is at least 1, so that ~, encloses only one point of the 
spectrum of S, i.e., E,. To control the resolvent in (3.14) one can expand 
it in a Rayleigh Schr6dinger series. We have 

1 ~ 1 
~ - S ~  V ( 2 ) - ( 8 ~ + 1 ) - ~ / 2  S" -- ,,~=o ~(S:~ + 1 )-1 _ Sa(S~ + 1 ) - - 1  

[ 1 ] ( S ; , + I )  m (3.9) 
V(2) ((Sa + 1 ) - 1 -  S~(S~ + 1) x 

Also, 

1 S ~ +  1 
f f ( S ~ + l ) _ a _ s ) . ( S a + l ) _  1 = ~ ~<1+ ( l+ lg l )  

~< 1 +2  ( E n + ~ )  = 2 E n + 4  

Hence, due to (3.3) we have 

~ 1 2e2ka 141 (2E, + 4) 
V(2)~(Sz+I ) 1-S~(S~+1)-1  <"l--ekd]2l  

The series (3.9) converges for those 2 so small that (1.3) holds. 

(ii) Let us consider the following contour integral: 

- & -  v ( 2 )  

where % =  {l~[ =3/2}. One can prove as above that this integral is an 
analytic operator-valued function in a disc around 2 = 0. This integral gives 
the spectral projection on the eigenspace corresponding to the eigenvalues 
contained in the circle %. Since the dimension of this space is an integer- 
valued analytic function of 2 for 2 small, it must be a constant so far as it 
is analytic. This proves that the two eigenvalues contained in % for 2 = 0 
remain separated by a finite gap, uniform in A, from the rest of the spec- 
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trum of S + V(2). Moreover, these two eigenvalues can be explicitely com- 
puted in terms of the quantities introduced above and they are given by 
+F(2). Hence the lowest lying eigenvalues of 11;. are Eo(2)+F(2)= 
Eo(2)+O(lAl(c2)alm). QED 

4. AN UPPER BOUND ON THE GROUND-STATE ENERGY 

In this section ! prove the second theorem stated in Section 1. If 
A is a cube of Z a to which we restrict our system by imposing periodic 
boundary conditions, we have to verify the following equality: 

( J l J ) - '  (JI H). l J ) =  

where t J )  is the state 

Tr(P(J, 2)e -HJ) 
Tr(e -m)  

(4.1) 

and 

P(J, 2)=l+(2axoayo - 1 )  1-[ (chJT+shJ~l-[a3x)+2axoayo (4.3) 

Let us begin by proving that 

(Jr J ) = 2  -~alTr(e Hj) 

We have 

(4.4) 

,45, 

1  46, 
where the sum runs over all collections of subsets (~i),'= 1 ...... such that 

1-[ "'" 1--[ zx~ "" zx.= ~ (4.7) 
X l E ~ I  X n ~ T n  

where ~ denotes the identity operator. Equation (4.6) derives from (4.5) 
because the expectation value in the state IN) of a product of r operators 
on distinct sites is zero. On the other hand, we have 

Tr(e-/4J) = ~ IF] (ch J T - s h  J, YI fix) (4.8) 
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where the sum runs over all the eigenstates that the operators a x have in 
common. If we expand the product and sum over all the Ising configura- 
tions, the terms containing the product of an odd number of spins cr x on 
one site cancel each other. We thus find (4.4). 

Next, let us compute (Jt ~L,o~ryo I J). We have 

~ (  J~_ J y - -  \) 
tYxoffyolJ)-- ch--+shVV 11 "rx CrxoffyoJN) (4.9) 

2 2 x~  / 

where the plus sign appears if 7 ~ (xoyo) ;  otherwise the minus sign is 

there. Hence we have 

where the sum runs over all collections (7i)`.= 1 ...... fulfilling (4.7) and such 
that 7, ~ (xoyo). We have 

T r ( [  1-[ (chJ,+shJ, l~ ax)]e-l-Z')=-21al(Jla,~oayoIJ } (4.11) 

Analogously, one can find the equalities 

(J[ %o~yo [J) = 2 -IAI Tr(axoayo e m) 

and 

(,JI Txo ryoaxoGy 0 I J )  

= - 2  IAI Tr {axoayo [ ,  

(4.12) 

~, ( xoyo )  x e 7  

which, together with (4.11) and (4.4), imply (4.1). QED. 

N o t e  added .  After the completion of this paper I learned that 
T. Kennedy has proved some of the results I discuss here, with different 
methods; his work has not yet appeared. See, however, ref. 3. 
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